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Analytical coherence transfer functions are presented for spin
systems consisting of two spins 1 under planar mixing conditions.
Compared to isotropic mixing experiments, larger transfer am-
plitudes are found and differences in the multiplet patterns are
discussed. C© 2001 Elsevier Science
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1. INTRODUCTION

Coherence and polarization transfer functions are impor
for the theoretical analysis and practical implementation of m
ing periods with maximum transfer efficiency. Homonuclear a
heteronuclear Hartmann–Hahn-type experiments can be cl
fied according to the form of the coupling tensors in the effec
mixing Hamiltonian (1, 2). For example, isotropic coupling ten
sors are created by heteronuclear isotropic mixing seque
(1, 3, 4) and by most homonuclear Hartmann–Hahn sequen
if applied to scalar coupled spin systems (1, 5, 6). Effective
planar coupling tensors (7) are typical for most heteronuclea
Hartmann–Hahn experiments (1, 8, 9) and for homonuclea
Hartmann–Hahn experiments that are based on RF irradia
at multiple frequencies (10–14). A large number of analyti-
cal coherence and polarization transfer functions are kn
for Hartmann–Hahn-type mixing experiments in spin-1

2 systems
(5, 8, 15–29). However, for spin systems involving spin-1 n
clei, only few analytical transfer functions have been repor
For spin systems consisting of a spin-1

2 and a spin-1 nucleus
transfer functions are known for planar (15) and isotropic (30)
mixing conditions. For two coupled spin-1 nuclei, analytic
transfer functions are only known for the case of isotropic m
ing (31, 32). Here, we present analytical coherence and po
ization transfer functions for two coupled spin-1 nuclei und
planar mixing conditions. These results form the basis for a
tailed comparison of isotropic and planar transfer between
spin-1 nuclei.
211090-7807/01 $35.00
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2. THEORY

The planar mixing Hamiltonian of a spin system consisti
of two spins 1 with coupling constantJ has the form

HP = 2π Jeff{Ix Sx + I ySy} [1]

with the effective coupling constantJeff≤ J/2 (9). AsHP com-
mutes withFz = Iz+ Sz, the HamiltonianHP is represented by
a block-diagonal 9× 9 matrix in the basis of the product func
tions |mI ,mS〉. The five blocks correspond to the five sets
basis functions{|1, 1〉}, {|1, 0〉, |0, 1〉}, {|1,−1〉, |−1, 1〉, |0, 0〉},
{|−1, 0〉, |0,−1〉}, and{|−1,−1〉} with m= 2, 1, 0,−1, and−2,
respectively. Hence, coherence or polarization transfer is o
possible between states with equal magnetic quantum numbem.
The individual blocks ofHP have the following explicite form.
There are two identical 1× 1 blocks corresponding to the tota
magnetic quantum numbersm= 2 andm= −2,

H(2)
P = H(−2)

P = 0= λ0, [2]

two identical 2×2 blocks corresponding tom= 1 andm= −1,

H(1)
P = H(−1)

P = 2π

(
0 Jeff

Jeff 0

)
[3]

with eigenvalues

λ1,2 = ∓2π Jeff [4]

and normalized eigenvectors

κ1,2 =
(
∓ 1√

2
,

1√
2

)
, [5]
0
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and one 3×3 block corresponding to the total magnetic quan
numberm= 0,

H(0)
P = 2π

 0 Jeff 0

Jeff 0 Jeff

0 Jeff 0

 [6]

with the eigenvalues

λ3 = 0
[7]

λ4,5 = ∓2
√

2π Jeff

and the eigenvectors

κ3 =
(
− 1√

2
, 0,

1√
2

)
κ4 =

(
1

2
,− 1√

2
,

1

2

)
[8]

κ5 =
(

1

2
,

1√
2
,

1

2

)
.

Based on these eigenvectors, an eigenbasis|ψk〉 can be con
structed (cf. Table 1) in which the matrix representation oHP

is diagonal and the diagonal propagator

UP(τ ) = exp{−i HPτ } [9]

can be calculated directly by exponentiating the diagona
ments of−i HPτ .

TABLE 1
Eigenbasis of the Planar Mixing

Hamiltonian HP for a Spin System
Consisting of Two Spins 1

|ψ1〉= |1, 1〉
|ψ2〉=− 1√

2
|0, 1〉 + 1√

2
|1, 0〉

|ψ3〉=− 1√
2
|1,−1〉 + 1√

2
|−1, 1〉

|ψ4〉= 1√
2
|0, 1〉 + 1√

2
|1, 0〉

|ψ5〉= 1

2
|1,−1〉 − 1√

2
|0, 0〉 + 1

2
|−1, 1〉

|ψ6〉=− 1√
2
|−1, 0〉 + 1√

2
|0,−1〉

|ψ7〉= 1

2
|1,−1〉 + 1√

2
|0, 0〉 + 1

2
|−1, 1〉

1 1
|ψ8〉= √
2
|−1, 0〉 + √

2
|0,−1〉

|ψ9〉= |−1,−1〉
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TABLE 2
Transfer Functions TA→B (τ ) of a Spin System Consisting of Two

Spins 1 under Planar Mixing Conditions with the Initial Operator
A = Iz

Target
operatorB TIz→B (τ )

Iz
1

2
+ 1

3
cos(2
√

2π Jeffτ )+ 1

6
cos(4π Jeffτ )

Sz
1

2
− 1

3
cos(2
√

2π Jeffτ )− 1

6
cos(4π Jeffτ )

IzS2
z

1

2
+ 1

2
cos(2
√

2π Jeffτ )

I 2
z Sz

1

2
− 1

2
cos(2
√

2π Jeffτ )

IzS2
x , IzS2

y
1

2
+ 1

4
cos(2
√

2π Jeffτ )+ 1

4
cos(4π Jeffτ )

I 2
x Sz, I 2

y Sz
1

2
− 1

4
cos(2
√

2π Jeffτ )− 1

4
cos(4π Jeffτ )

Ix Sy,−I ySx
1

2
√

2
sin(2
√

2π Jeffτ )+ 1

4
sin(4π Jeffτ )

[ Ix, Iz]+[Sy, Sz]+, − 1

2
√

2
sin(2
√

2π Jeffτ )+ 1

4
sin(4π Jeffτ )

−[ I y, Iz]+[Sx, Sz]+

Hence, the coherence and polarization transfer functions

TA→B (τ ) = Tr{B†UP(τ ) A U†P(τ )}
Tr{B† B} [10]

between an initial operatorA and a target operatorB can be de-
rived if A andB are also expressed in the eigenbasis|ψk〉 ofHP.

For the initial operatorA = I1z, all nonvanishing coherenc
and polarization transfer functions of the spin system consis
of two spins 1 under planar mixing conditions are summariz
in Table 2. The transfer functions consist of a constant term
of one or two harmonic terms. The frequencies of the harmo
terms are 2Jeff and

√
2Jeff, respectively, corresponding to dif

ferences of eigenvalues in Eqs. [4] and [7], respectively.

3. RESULTS AND DISCUSSION

It is interesting to compare the results for planar mixing
two coupled spins 1 to the case of isotropic mixing (31, 32). The
observable transfer functions for isotropic mixing for a spin s
tem consisting of two spins 1 under the normalization condit
Eq. [10] are (32)

TIz→Sz(τ ) = 1

2
− 2

9
cos(2π Jτ )− 5

18
cos(4π Jτ ), [11]

TIz→I 2
x Sz

(τ ) = 1 − 1
cos(2π Jτ )− 1

cos(4π Jτ ), [12]

2 6 3

TIz→Ix Sy−I y Sx (τ ) = 1

6
sin(2π Jτ )+ 5

12
sin(4π Jτ ). [13]



-
nd 2

ions

and
en-
istic
the

This
ero

the
d
on
s
m-

,

with
cor-

. In
212 LUY AND G

FIG. 1. Transfer functionsTIz→Sz (τ ) (solid line), 2
3 TIz→I 2

x Sz
(τ ) (dashed–

dotted line) corresponding to the contribution of the sum of the outer trip
components,TIz→Sz − 2

3 TIz→I 2
x Sz

(τ ) (dashed line) corresponding to the con
tribution of the inner triplet component, and13 TIz→Ix Sy − I y Sx (τ ) (dotted line)
under planar mixing conditions.

The transfer functionTIz→Sz corresponds to the overall polar
ization transfer and includes all three components of the trip
usually denoted as (1,1,1). The transfer functionTIz→I 2

x Sz
de-

scribes the behavior of the outer triplet components (1,0,1) a
in order to get their contribution to the overall transfer it mu
be scaled by the factor23. The contribution of the inner multi-
plet component (0,1,0) is the differenceTIz→Sz− 2

3TIz→I 2
x Sz

. The
antiphase termTIz→Ix Sy−I y Sx does not contribute to the overal

FIG. 2. Transfer functionsTIz→Sz (τ ) (solid line), 2
3 TIz→I 2

x Sz
(τ ) (dashed–

dotted line) corresponding to the contribution of the sum of the outer trip
2
components,TIz→Sz − 3 TIz→I 2

x Sz
(τ ) (dashed line) corresponding to the con

tribution of the inner triplet component, and13 TIz→Ix Sy−I y Sx (τ ) (dotted line)
under isotropic mixing conditions (32).
LASER
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polarization transfer functionTIz→Sz. To facilitate the compari
son, the contributing components are visualized in Figs. 1 a
for the planar and isotropic case, respectively.

Whereas planar and isotropic polarization transfer funct
are identical for a spin system consisting of two spins1

2 (1), this
is not the case for spin-1 particles. According to Table 2
Eqs. [11]–[13], the most important differences are the frequ
cies of the harmonic terms, which determine the character
form of the transfer functions. In the case of planar mixing,
ratio of the nonzero frequencies

√
2J and 2J is not a rational

number and hence the transfer functions are not periodic.
is in contrast to the case of isotropic mixing, where the nonz
frequenciesJ and 2J are related by a factor of 2 and hence,
transfer functions have a period ofJ−1 and a much simpler an
more symmetric form (cf. Fig. 2). The maximum polarizati
transfer efficiencyTIz→Sz under isotropic mixing conditions i
limited to 80%, whereas under planar mixing conditions co
plete transfer is possible. Almost complete transfer (>99.7%) is
found at a mixing time of about 1.76/Jeff. However, at a much
shorter mixing time of 0.3/Jeff a transfer efficiency of 93%

FIG. 3. Contour and stacked plots of a series of simulated 1D spectra
incremented planar mixing times. The integral over the simulated triplets
responds to the transferTIz→Sz , while the transfer functions23 TIz→I 2

x Sz
and

TIz→Sz − 2
3 TIz→I 2

x Sz
correspond to the outer and central lines, respectively
-the contour plot the effect of the dispersive antiphase magnetization on the line-
shape of the multiplets, which results from the transferTIz→Ix Sy−I y Sx (only
positive contour levels are shown), is visualized.
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which significantly exceeds the transfer amplitude of isotro
mixing experiments, is found.

The derived analytical transfer functions were verified w
the help of independent numerical simulations using an exten
version of the program SIMONE (30, 33). In Figs. 3 and 4, sim-
ulated spectra of spinSare shown as a function of the mixin
timeτ for planar and isotropic mixing, respectively. In the sim
ulations, planar mixing in theyzplane was applied to the initia
operatorIx and the expectation value of the operatorS− was cal-
culated. This case is equivalent to the transfersTIz→B in Table 2
and Eqs. [11]–[13], since only the coordinate system is chan
from x, y, z to y, z, x. The outer lines of the triplets (correspon
ing to 2

3 TIz→I 2
x Sz

in Table 2 and Eqs. [11]–[13]) show a time d
pendence different than that of the central line (correspond
to TIz→Sz − 2

3 TIz→I 2
x Sz

). In addition, dispersive antiphase term
corresponding to the operatorIx Sy− I ySx result in undesirable
phase distortions. The contribution of the antiphase term is
visible in the contour plots of Figs. 3 and 4. While isotrop
mixing conditions create pure in-phase signals only at mix
times near integer multiples of 1/(4Jeff), planar mixing results

FIG. 4. Contour and stacked plots of a series of simulated 1D spectra
incremented isotropic mixing times. The integral over the simulated trip
corresponds to the transferTIz→Sz , while the transfer functions23 TIz→I 2

x Sz
and

TIz→Sz− 2
3 TIz→I 2

x Sz
correspond to the outer and central lines, respectively. In
contour plot the effect of the dispersive antiphase magnetization on the lines
of the multiplets, which results from the transferTIz→Ix Sy−I y Sx (only positive
contour levels are shown), is visualized.
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in approximately pure in-phase signals in a wide range of mix
times 0.6/Jeff ≤ τ ≤ 1.1/Jeff.

In heteronuclear polarization transfer experiments betw
two spin-1 nuclei (as, for example, in6Li–2H or 14N–2H spin
pairs), planar mixing (P) is preferable to isotropic mixing (I) n
only in terms of transfer amplitude but also in terms of trans
time, becauseJeff

P ≈ 1.5Jeff
I . In homonuclear spin systems co

sisting of two spin-1 nuclei with short relaxation times due
quadrupolar interactions the transfer is significantly faster
der isotropic mixing conditions than under planar mixing co
ditions (Jeff

P ≈ 0.5Jeff
I ) and therefore highly preferred. Plan

mixing may be of advantage in homonuclear cases where
gain in transfer amplitude is not counterbalanced by relaxa
losses or if relatively clean multiplets are desirable for a ra
of coupling constants. However, in the more practical cas
perdeuterated molecules with spin systems consisting of m
than two coupled spin-1 nuclei (31), either isotropic or plana
mixing conditions might be favorable depending on the coup
network of the spins, as was previously shown for the spin-1

2 case
(e.g., (26)).
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