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Analytical coherence transfer functions are presented for spin 2. THEORY
systems consisting of two spins 1 under planar mixing conditions.
Compared to isotropic mixing experiments, larger transfer am- The planar mixing Hamiltonian of a spin system consisting

plitudes are found and differences in the multiplet patterns are  of two spins 1 with coupling constadthas the form
discussed. © 2001 Elsevier Science
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with the effective coupling constade < J/2 (9). As Hp com-
mutes withF, = |, + S,, the Hamiltoniarp is represented by
1. INTRODUCTION a block-diagonal % 9 matrix in the basis of the product func-
tions |m;, ms). The five blocks correspond to the five sets of
Coherence and polarization transfer functions are importardgsis functiong|1, 1)}, {|1, 0), |0, 1)}, {|1, -1), |1, 1), |0, O},
for the theoretical analysis and practical implementation of mixt—L1, 0, |0, —1)}, and{|-1, —1)} withm = 2, 1, 0,—1, and—2,
ing periods with maximum transfer efficiency. Homonuclear amméspectively. Hence, coherence or polarization transfer is onl
heteronuclear Hartmann—Hahn-type experiments can be clapsissible between states with equal magnetic quantum number
fied according to the form of the coupling tensors in the effectiviehe individual blocks of{p have the following explicite form.
mixing Hamiltonian {, 2). For example, isotropic coupling ten-There are two identical & 1 blocks corresponding to the total
sors are created by heteronuclear isotropic mixing sequenogggnetic quantum numbems= 2 andm = —2,
(1, 3, 9 and by most homonuclear Hartmann—Hahn sequences
if applied to scalar coupled spin systemis b, 6. Effective
planar coupling tensorg’) are typical for most heteronuclear
Hartmann—Hahn experimentg,(8, 9 and for homonuclear
Hartmann—-Hahn experiments that are based on RF irradiati@f identical 2« 2 blocks corresponding to = 1 andm = —1,
at multiple frequencies10-14). A large number of analyti-
cal coherence and polarization transfer functions are known o Jef
for Hartmann—Hahn-type mixing experiments in sgisystems HY =HEY = 271( . ) [3]
(5, 8, 15-29. However, for spin systems involving spin-1 nu- 0
clei, only few analytical transfer functions have been reported.
For spin systems consisting of a spjrand a spin-1 nucleus, With eigenvalues
transfer functions are known for plandr5 and isotropic 80)
mixing conditions. For two coupled spin-1 nuclei, analytical Ao = F2m I [4]
transfer functions are only known for the case of isotropic mix- ’
ing (31, 32. Here, we present analytical coherence and polar- _ .
ization transfer functions for two coupled spin-1 nuclei undéarnd normalized eigenvectors
planar mixing conditions. These results form the basis for a de-

tailed comparison of isotropic and planar transfer between two Kip= <:Fi i) [5]
spin-1 nuclei. V2 2
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ANALYTICAL PLANAR MIXING TRANSFER FUNCTIONS 211

and one X 3 block corresponding to the total magnetic quantum TABLE 2
numbem = 0, Transfer Functions T4_, 5 (7) of a Spin System Consisting of Two
Spins 1 under Planar Mixing Conditions with the Initial Operator
0o Jf 0 A=l
7‘(,(30) =27|J¢f o Jeff [6] Target
o J¢f 0 operatorB Ti,—8 (7)
I 1 + }cos(&/_Zn J¢fr) + }cos(éh Jeffzy
with the eigenvalues i i 613
S 573 cos(d/2x J%r) — 5 cos(4r J%7)
rA3=0
3 S 3T 7] 1. % + %cos(ZK/_Zn Jeffr)
)»4’5 = :Fz 2m )¢
12S, % - %cos(Z\/_ZnJeﬁr)
and the eigenvectors 1,2, 1, % I %cos(&/_ZﬂJeﬁT) " %cos(m‘]eﬂr)
( 1 0 1 ) 128,17, % - %COS(Z\/_ZﬂJeﬁr) - zllcos(zsze“r)
K3 = T =Y T =
V2© V2 xSy, —lyS z—jé sin(2v/2r 3%f7) + % sin(4r J%%r)
1 11 1 1
Ky = (5, ~ 75 5) (8] u;, |z]+][s[,, sz]+], ~ 573 Sin(@/2 1%) + Z sin(4r 3°)
—[ly, 1204[S0 S+

/111
K5_ 2’\/572'

Based on these eigenvectors, an eigenljagiscan be con-  Hence, the coherence and polarization transfer functions [1
structed (cf. Table 1) in which the matrix representatiorgf

is diagonal and the diagonal propagator Tr{BUp(t) A Ug(r)}

Tass (7) = Tr(BT B)

(10]

Up(t) = exp{—i Hpt} [9]
between an initial operatgk and a target operatd@ can be de-
can be calculated directly by exponentiating the diagonal efd€d if AandB are also expressed in the eigenbagig of 7e.
ments of—i Hpr. For the_ |n|t_|al operatoA = I_lz, all nonvan_lshlng coheren_ce_
and polarization transfer functions of the spin system consistin
of two spins 1 under planar mixing conditions are summarizec

TABLE 1
Eigenbasis of the Planar Mixing
Hamiltonian Hp for a Spin System
Consisting of Two Spins 1

o) = 1.1)
o) = ———10.1) + “=11.0)
2) = ﬁ 'y \/é 5
1 1
=——|1, -1 —|-1,1
e == L =)+ 5L
1 1
= —10,1 —11,0
)= 10,1+ =110
1 1 1
|1//5>:§|17_1>_ﬁlovo>+§|_1vl)
W) = — = |-1,0) + = [0, ~1)
o) =—5-1 7
1 1 1
W)= 51D + 510,00+ 3111
1 1
=—|-1,0 —10, —1
e = 5110+ —=10.-1
o) = |1, 1)

in Table 2. The transfer functions consist of a constant term an
of one or two harmonic terms. The frequencies of the harmoni
terms are 2°" and+/2J¢", respectively, corresponding to dif-
ferences of eigenvalues in Eqgs. [4] and [7], respectively.

3. RESULTS AND DISCUSSION

It is interesting to compare the results for planar mixing for
two coupled spins 1 to the case of isotropic mixid,(32. The
observable transfer functions for isotropic mixing for a spin sys-
tem consisting of two spins 1 under the normalization condition
Eq. [10] are 82)

1 2 5

T,os(r) = 579 cos(2rJr) — 1—8005(41Jr), [11]
1 1 1

Ti,—i25(t) = 576 cos(2rJt) — 3 cos(4rJt), [12]

1. 5 .
T|Z_>|xsy_|ys<(‘[) = 6 Sln(27TJ‘L') + 1—25|n(49'[\]t). [13]
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polarization transfer functiof,_. s,. To facilitate the compari-
son, the contributing components are visualized in Figs. 1 and
for the planar and isotropic case, respectively.

Whereas planar and isotropic polarization transfer function:
are identical for a spin system consisting of two splir(i), this
is not the case for spin-1 particles. According to Table 2 anc
Eqgs. [11]-[13], the most important differences are the frequen
cies of the harmonic terms, which determine the characteristi
form of the transfer functions. In the case of planar mixing, the
ratio of the nonzero frequencie$2J and 2J is not a rational
number and hence the transfer functions are not periodic. Th
is in contrast to the case of isotropic mixing, where the nonzer
frequencies) and 2] are related by a factor of 2 and hence, the

1.2 1.6 2.0

Mixing time[1/J5%]

0 0.4

transfer functions have a period #f* and a much simpler and
more symmetric form (cf. Fig. 2). The maximum polarization
transfer efficiencyT|,_, s, under isotropic mixing conditions is

limited to 80%, whereas under planar mixing conditions com-
FIG. 1. Transfer functiond, s, (v) (solid line), 5T, 2, (v) (dashed- plete transfer is possible. Aimost complete transfedq.7%) is
dotted line) corresponding to the contribution of the sum of the outer triplfbund ata mixing time of abouth/Jeff However. at a much

componentsT,_.s, — %Tlﬁlfsz (z) (dashed line) corresponding to the con-
tribution of the inner triplet component, ar#ﬂ'.z_,.xsy_ Iy (7) (dotted line)
under planar mixing conditions.

The transfer functioff;,_. s, corresponds to the overall polar-
ization transfer and includes all three components of the triplet,
usually denoted as (1,1,1). The transfer funcfion, zs, de-
scribes the behavior of the outer triplet components (1,0,1) and
in order to get their contribution to the overall transfer it must
be scaled by the factcé‘. The contribution of the inner multi-
plet component (0,1,0) is the differen€g_, g, — %T.ﬁ 12s,- The
antiphase ternT,, ., s, 1,5, does not contribute to the overall
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FIG. 3.

shorter mixing time of B/J¢" a transfer efficiency of 93%,
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Contour and stacked plots of a series of simulated 1D spectra witt

incremented planar mixing times. The integral over the simulated triplets cor

FIG.2. Transfer functiond,_.s, () (solid Iine),%TlﬁlxzSZ (r) (dashed— responds to the transfdij,_.s,, while the transfer functionéT
dotted line) corresponding to the contribution of the sum of the outer tripl&i,—,s, — %T

1125, and
. = I5S .
correspond to the outer and central lines, respectively. In

1,128,

componentsT,.s, — %Tlﬁlxzsz (v) (dashed line) corresponding to the con-the contour plot the effect of the dispersive antiphase magnetization on the line
tribution of the inner triplet component, argjﬂﬁ.xsyqysx () (dotted line) shape of the multiplets, which results from the transfgr, |, s,—1,s, (only

under isotropic mixing conditions3p).

positive contour levels are shown), is visualized.
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which significantly exceeds the transfer amplitude of isotropin approximately pure in-phase signals in a wide range of mixing
mixing experiments, is found. times 06/J°" < ¢ < 1.1/J°.

The derived analytical transfer functions were verified with In heteronuclear polarization transfer experiments betwee
the help of independent numerical simulations using an extendaa spin-1 nuclei (as, for example, fi—2H or *N-2H spin
version of the program SIMONEQ, 33. In Figs. 3 and 4, sim- pairs), planar mixing (P) is preferable to isotropic mixing (I) not
ulated spectra of spi are shown as a function of the mixingonly in terms of transfer amplitude but also in terms of transfer
time t for planar and isotropic mixing, respectively. In the simtime, becausgS™ ~ 1.5J". In homonuclear spin systems con-
ulations, planar mixing in thgz plane was applied to the initial sisting of two spin-1 nuclei with short relaxation times due to
operator, and the expectation value of the operaé@owas cal- quadrupolar interactions the transfer is significantly faster un.
culated. This case is equivalent to the transTgys g in Table 2  der isotropic mixing conditions than under planar mixing con-
and Egs. [11]-[13], since only the coordinate system is changgitions (J™~ 0.53") and therefore highly preferred. Planar
fromx, y, ztoy, z, X. The outer lines of the triplets (correspondmixing may be of advantage in homonuclear cases where th
ing to% T, 125 in Table 2 and Egs. [11]-{13]) show a time degain in transfer amplitude is not counterbalanced by relaxatior
pendence different than that of the central line (correspondilugses or if relatively clean multiplets are desirable for a range
toT,-s — % Ti,—12s,)- In addition, dispersive antiphase term®f coupling constants. However, in the more practical case o
corresponding to the operatlyS, — |, S, result in undesirable perdeuterated molecules with spin systems consisting of mor
phase distortions. The contribution of the antiphase term is bdstn two coupled spin-1 nucleBl), either isotropic or planar
visible in the contour plots of Figs. 3 and 4. While isotropienixing conditions might be favorable depending on the coupling
mixing conditions create pure in-phase signals only at mixingetwork of the spins, as was previously shown for the %atase
times near integer multiples of (4J¢™), planar mixing results (e.g., 6)).
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